Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668177

RESUMO

The Rashba effect appears in the semiconductors with an inversion-asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance of photoelectric devices, but also used to expand the applications of semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect of two-dimensional (2D) organic-inorganic hybrid perovskites is summarized. The origin and magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and spintronic applications of 2D perovskites.

2.
Adv Sci (Weinh) ; : e2308390, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626374

RESUMO

The smart materials with multi-color and stimuli-responsive luminescence are very promising for next generation of optical information encryption and anti-counterfeiting, but these materials are still scarce. Herein, a multi-level information encryption strategy is developed based on the polychromatic emission of Sb-doped double perovskite powders (SDPPs). Cs2NaInCl6:Sb, Cs2KInCl6:Sb, and Cs2AgInCl6:Sb synthesized through coprecipitation methods exhibit broadband emissions with bright blue, cyan, and orange colors, respectively. The information transmitted by specific SDPP is encrypted when different SDPPs are mixed. The confidential information can be decrypted by selecting the corresponding narrowband filter. Then, an encrypted quick response (QR) code with improved security is demonstrated based on this multi-channel selection strategy. Moreover, the three types of SDPPs exhibit three different water-triggered luminescence switching behaviors. The confidential information represented by Cs2NaInCl6:Sb can be erased/recovered through a simple water spray/drying. Whereas, the information collected from the green channel is permanently erased by moisture, which fundamentally avoids information leakage. Therefore, different encryption schemes can be designed to meet a variety of encryption requirements. The multicolor and stimuli-responsive luminescence greatly enrich the flexibility of optical information encryption, which leaps the level of security and confidentiality.

3.
Small ; : e2309499, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624172

RESUMO

Various semiconductor devices have been developed based on 2D heterojunction materials owing to their distinctive optoelectronic properties. However, to achieve efficient charge transfer at their interface remains a major challenge. Herein, an alloy heterojunction concept is proposed. The sulfur vacancies in ZnIn2S4 are filled with selenium atoms of PdSe2. This chemically bonded heterojunction can significantly enhance the separation of photocarriers, providing notable advantages in the field of photoelectric conversion. As a demonstration, a two-terminal photodetector based on the PdSe2/ZnIn2S4 heterojunction materials is fabricated. The photodetector exhibits stable operation in ambient conditions, showcasing superior performance in terms of large photocurrent, high responsivity (48.8 mA W-1) and detectivity (1.98 × 1011 Jones). To further validate the excellent optoelectronic performance of the heterojunction, a tri-terminal phototransistor is also fabricated. Benefiting from gate voltage modulation, the photocurrent is amplified to milliampere level, and the responsivity is increased to 229.14 mA W-1. These findings collectively demonstrate the significant potential of the chemically bonded PdSe2/ZnIn2S4 alloy heterojunction for future optoelectronic applications.

4.
Adv Mater ; : e2311524, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38275007

RESUMO

Neuromorphic visual sensors (NVS) based on photonic synapses hold a significant promise to emulate the human visual system. However, current photonic synapses rely on exquisite engineering of the complex heterogeneous interface to realize learning and memory functions, resulting in high fabrication cost, reduced reliability, high energy consumption and uncompact architecture, severely limiting the up-scaled manufacture, and on-chip integration. Here a photo-memory fundamental based on ion-exciton coupling is innovated to simplify synaptic structure and minimize energy consumption. Due to the intrinsic organic/inorganic interface within the crystal, the photodetector based on monolithic 2D perovskite exhibits a persistent photocurrent lasting about 90 s, enabling versatile synaptic functions. The electrical power consumption per synaptic event is estimated to be≈1.45 × 10-16  J, one order of magnitude lower than that in a natural biological system. Proof-of-concept image preprocessing using the neuromorphic vision sensors enabled by photonic synapse demonstrates 4 times enhancement of classification accuracy. Furthermore, getting rid of the artificial neural network, an expectation-based thresholding model is put forward to mimic the human visual system for facial recognition. This conceptual device unveils a new mechanism to simplify synaptic structure, promising the transformation of the NVS and fostering the emergence of next generation neural networks.

5.
ACS Appl Mater Interfaces ; 16(3): 4160-4168, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38204415

RESUMO

Matrix metalloproteinase 2 (MMP-2) has been considered a promising molecular biomarker for cancer diagnosis due to its related dysregulation. In this work, a core-satellite structure-powered ratiometric surface-enhanced Raman scattering (SERS) nanosensor with high sensitivity and specificity to MMP-2 was developed. The SERS nanosensor was composed of a magnetic bead encapsulated within a 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB)-labeled gold shell as the capture core and a 4-mercaptobenzonitrile (MBN)-encoded silver nanoparticle as the signal satellite, which were connected through a peptide substrate of MMP-2. MMP-2-triggered cleavage of peptides from the core surface resulted in a decrease of the SERS intensity of MBN. Since the SERS intensity of DTNB was used as an internal standard, the reliable and sensitive quantification of MMP-2 activity would be realized by the ratiometric SERS signal, with a limit of detection as low as 2.067 ng/mL and a dynamic range from 5 to 100 ng/mL. Importantly, the nanosensor enabled a precise determination of MMP-2 activity in tumor cell secretions, which may provide an avenue for early diagnosis and classification of malignant tumors.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Metaloproteinase 2 da Matriz , Análise Espectral Raman/métodos , Ácido Ditionitrobenzoico , Prata/química , Ouro/química
6.
Nanotechnology ; 34(50)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748450

RESUMO

Photovoltaic device is highly dependent on the weather, which is completely ineffective on rainy days. Therefore, it is very significant to design an all-weather power generation system that can utilize a variety of natural energy. This work develops a water droplet friction power generation (WDFG)/solar-thermal power generation (STG) hybrid system. The WDFG consists of two metal electrodes and a candle soot/polymer composite film, which also can be regarded as a capacitor. Thus, the capacitor coupled power generation (C-WDFG) device can achieve a sustainable and stable direct-current (DC) output under continuous dripping without external conversion circuits. A single device can produce an open-circuit voltage of ca.0.52 V and a short-circuit current of ca.0.06 mA, which can be further scaled up through series or parallel connection to drive commercial electronics. Moreover, we demonstrate that the C-WDFG is highly compatible with the thermoelectric device. The excellent photothermal performance of soot/polymer composite film can efficiently convert solar into heat, which is then converted to electricity by the thermoelectric device. Therefore, this C-WDFG/STG hybrid system can work in both rainy and sunny days.

7.
Nanoscale ; 15(29): 12212-12219, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37395090

RESUMO

Increasing attention has been paid recently to superwettability and its prospective potential applications in various fields. A new approach towards the establishment of flexible, self-assembled superhydrophobic surfaces with self-reported wettability on a variety of substrates has been advanced. The approach involves the fabrication of a dense monolayer of photonic crystal films that possess a layered structure with superior adhesion at the liquid-gas-solid interface. Thus, the resulting hierarchical photonic crystal film with a structurally hydrophobic surface offers a promising addition to the creation of durable and flexible superhydrophobic surfaces across a variety of substrates that exhibit the self-reported wettability. Furthermore, a bifunctional membrane that can effectively remove oil and adsorb heavy metal ions contained in wastewater has been developed for potential use in large-scale industrial wastewater treatment. This research sheds fresh light on the application of bionics and the lotus and mussel functions in oil/water separation.

8.
Opt Express ; 31(15): 24667-24677, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475287

RESUMO

Optical multiplexing is a pivotal technique for augmenting the capacity of optical data storage (ODS) and increasing the security of anti-counterfeiting. However, due to the dearth of appropriate storage media, optical multiplexing is generally restricted to a single dimension, thus curtailing the encoding capacity. Herein, the co-multiplexing spectral and temporal dimensions are proposed for optical encoding based on photoluminescence (PL) and persistent-luminescence (PersL) at four different wavelengths. Each emission color comprises four luminescence modes. The further multiplexing of four wavelengths leads to the maximum encoding capacity of 8 bits at each pixel. The wavelength difference between adjacent peaks is larger than 50 nm. The well-separated emission wavelengths significantly lower the requirements for high-resolution spectrometers. Moreover, the information is unable to be decoded until both PL and PersL spectra are collected, suggesting a substantial improvement in information security and the security level of anti-counterfeiting.

9.
J Colloid Interface Sci ; 648: 56-65, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295370

RESUMO

Exploiting the photoelectrode materials with broad solar light response, high-efficient separation of photogenerated charges and abundant active sites is extremely vital yet enormously challenging. Herein, an innovative two-dimensional (2D) lateral anatase-rutile TiO2 phase junctions with controllable oxygen vacancies perpendicularly aligned on Ti mesh is presented. Our experimental observations and theoretical calculations corroborate explicitly that the 2D lateral phase junctions together with three-dimensional arrays not only exhibit the high-efficient photogenerated charges separation guaranteed by the build-in electric field at the side-to-side interface, but also furnish enriching active sites. Moreover, the interfacial oxygen vacancies generate new defect energy levels and serve as electron donors, hence extending visible light response and further accelerating the separation and transfer of photogenerated charges. Profiting from these merits, the optimized photoelectrode yield a pronounced photocurrent density of 1.2 mA/cm2 at 1.23 V vs. RHE with Faradic efficiency of 100%, which is approximately 2.4 times larger than that of pristine 2D TiO2 nanosheets. Furthermore, the incident photon to current conversion efficiency (IPCE) of the optimized photoelectrode is also boosted within both ultraviolet and visible light regions. This research is envisioned deliver the new insight in developing the novel 2D lateral phase junctions for PEC applications.

10.
Nanomaterials (Basel) ; 13(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37368316

RESUMO

Photoactive nanomaterials exhibit myriad customized properties, including a photon converting ability, specific surface area, physicochemical stability, and chemical reactivity, making them appealing for a wide range of practical applications [...].

11.
J Colloid Interface Sci ; 649: 685-693, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37385033

RESUMO

Constructing semiconductor heterojunctions can enable novel schemes for highly efficient photocatalytic activity. However, introducing strong covalent bonding at the interface remains an open challenge. Herein, ZnIn2S4 (ZIS) with abundant sulfur vacancies (Sv) is synthesized with the presence of PdSe2 as an additional precursor. The sulfur vacancies of Sv-ZIS are filled by Se atoms of PdSe2, leading to the Zn-In-Se-Pd compound interface. Our density functional theory (DFT) calculations reveal the increased density of states at the interface, which will increase the local carrier concentration. Moreover, the length of the Se-H bond is longer than that of the SH bond, which is good for the evolution of H2 from the interface. In addition, the charge redistribution at the interface results in a built-in field, providing the driving force for efficient separation of photogenerated electron-hole. Therefore, the PdSe2/Sv-ZIS heterojunction with strong covalent interface exhibits an excellent photocatalytic hydrogen evolution performance (4423 µmol g-1h-1) with an apparent quantum efficiency (λ > 420 nm) of 9.1 %. This work will provide new inspirations to improve photocatalytic activity by engineering the interfaces of semiconductor heterojunctions.

12.
Opt Express ; 31(6): 10191-10200, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157572

RESUMO

Mn2+ doped lead-free double perovskites are emerging afterglow materials that can avoid the usage of rare earth ions. However, the regulation of the afterglow time is still a challenge. In this work, the Mn doped Cs2Na0.2Ag0.8InCl6 crystals with afterglow emission at about 600 nm are synthesized by a solvothermal method. Then, the Mn2+ doped double perovskite crystals are crushed into different sizes. As the size decreases from 1.7 mm to 0.075 mm, the afterglow time decreases from 2070 s to 196 s. Steady-state photoluminescence (PL) spectra, time resolved PL, thermoluminescence (TL) reveal the afterglow time monotonously decreases due to the enhanced nonradiative surface trapping. The modulation on afterglow time will greatly promote their applications in various fields, such as bioimaging, sensing, encryption, and anti-counterfeiting. As a proof of concept, dynamic display of information is realized based on different afterglow times.

13.
J Colloid Interface Sci ; 630(Pt A): 297-305, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244102

RESUMO

Solar steam generation (SSG) is a very promising desalination technology. However, new photothermal materials are still to be explored to further reduce the cost, and the device structure is still to be innovated to improve the structural integrality and evaporation performance. In this work, an all-in-one highly-efficient and self-floating jellyfish-like SSG (SFJ-SSG) is developed based on partially carbonized Enteromorpha (EA) aerogel (PCEAA). The carbonized top surface exhibits high solar absorption ability and excellent photothermal effect, while the uncarbonized EA retains the hydrophilicity and high-water transport capability due to the nature of tubular algal plant. Moreover, the heat produced by photothermal effect of the carbonized EA is confined at the top surface due to the thermal insulation of the uncarbonized layer, which is very beneficial for interfacial water evaporation. After optimizing the carbonization time and the height of the SFJ-SSG, a high evaporation rate of 1.87 kg m-2h-1 is obtained under 1.0 sun irradiation, which outcompetes most SSG based on carbonized biomass. The development of SFJ-SSG based on EA not only minimizes the cost of SSG, but also solves the EA pollution, ensuring the broad prospect in practical applications.


Assuntos
Energia Solar , Purificação da Água , Vapor , Luz Solar , Purificação da Água/métodos , Água
14.
ACS Nano ; 17(3): 2611-2619, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36533993

RESUMO

Silicon (Si) photovoltaic devices present possible avenues for overcoming global energy and environmental challenges. The high reflection and surface recombination losses caused by the Si interface and its nanofabrication process are the main hurdles for pursuing a high energy conversion efficiency. However, recent advances have demonstrated great success in improving device performance via proper Si interface modification with the optical and electrical features of two-dimensional (2D) materials. Firmly integrating large-area 2D materials with 3D Si nanostructures with no gap in between, which is essential for optimizing device performance, has rarely been achieved by any technique due to the complex 3D morphology of the nanostructures. Here we propose the concept of a 3D conformal coating of graphene metamaterials, in which the 2D graphene layers perfectly adapt to the 3D Si curvatures, leading to a universal 20% optical reflection decrease and a 60% surface passivation improvement. In a further application of this metamaterial 3D conformal coating methodology to standard Si solar cells, an overall 23% enhancement of the solar energy conversion efficiency is achieved. The 3D conformal coating strategy could be readily extended to various optoelectronic and semiconductor device systems with peculiar performance, offering a pathway for highly efficient energy-harvesting and storage solutions.

15.
Opt Lett ; 47(24): 6468-6471, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538464

RESUMO

We present a snapshot multi-frame parallel holographic microscopy system through a reconfigurable optical comb source, which consists of a digital micromirror device (DMD) based spectrum filter system and a spectroscopic Michelson interferometric system. The proposed system allows arbitrarily tuning comb spacing and comb number, and the capturing of multi-frame images without overlap in one exposure. As a result, high-quality spectral holograms can be obtained with less acquisition time. The performance of the system is detailed in the experiment and 45-wavelengths holographic imaging for perovskite micro-platelets is conducted, which proves the system has the ability to realize high-performance four-dimensional (4D) imaging.

16.
Nanomaterials (Basel) ; 12(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432266

RESUMO

The introduction of impure atoms or crystal defects is a promising strategy for enhancing the photocatalytic activity of semiconductors. However, the synergy of these two effects in 2D atomic layers remains unexplored. In this case, the preparation of molybdenum-doped thin ZnIn2S4-containing S vacancies (Mo-doped Sv-ZnIn2S4) is conducted using a one-pot solvothermal method. The coordination of Mo doping and S vacancies not only enhances visible light absorption and facilitates the separation of photogenerated carriers but also provides many active sites for photocatalytic reactions. Meanwhile, the Mo-S bonds play function as high-speed channels to rapidly transfer carriers to the active sites, which can directly promote hydrogen evolution. Consequently, Sv-ZnIn2S4 with an optimized amount of Mo doping exhibits a high hydrogen evolution rate of 5739 µmol g-1 h-1 with a corresponding apparent quantum yield (AQY) of 21.24% at 420 nm, which is approximately 5.4 times higher than the original ZnIn2S4. This work provides a new strategy for the development of highly efficient and sustainable 2D atomic photocatalysts for hydrogen evolution.

17.
Research (Wash D C) ; 2022: 9896548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204245

RESUMO

Multicolor fluorescence of mixed halide perovskites enormously enables their applications in photonics and optoelectronics. However, it remains an arduous task to obtain multicolor emissions from perovskites containing single halogen to avoid phase segregation. Herein, a fluorescent composite containing Eu-based metal-organic frameworks (MOFs), 0D Cs4PbBr6, and 3D CsPbBr3 is synthesized. Under excitations at 365 nm and 254 nm, the pristine composite emits blue (B) and red (R) fluorescence, which are ascribed to radiative defects within Cs4PbBr6 and 5D0→7FJ transitions of Eu3+, respectively. Interestingly, after light soaking in the ambient environment, the blue fluorescence gradually converts into green (G) emission due to the defect repairing and 0D-3D phase conversion. This permanent and unique photochromic effect enables anticounterfeiting and microsteganography with increased security through a micropatterning technique. Moreover, the RGB luminescence is highly stable after encapsulation by a transparent polymer layer. Thus, trichromatic light-emitting modules are fabricated by using the fluorescent composites as color-converting layers, which almost fully cover the standard color gamut. Therefore, this work innovates a strategy for construction of tunable multicolor luminescence by manipulating the radiative defects and structural dimensionality.

18.
Nanomaterials (Basel) ; 12(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35564156

RESUMO

Black 3D-TiO2 nanotube arrays are successfully fabricated on the Ti meshes through a facile electrochemical reduction method. The optimized black 3D-TiO2 nanotubes arrays yield a maximal photocurrent density of 1.6 mA/cm2 at 0.22 V vs. Ag/AgCl with Faradic efficiency of 100%, which is about four times larger than that of the pristine 3D-TiO2 NTAs (0.4 mA/cm2). Such boosted PEC water splitting activity primarily originates from the introduction of the oxygen vacancies, which results in the bandgap shrinkage of the 3D-TiO2 NTAs, boosting the utilization efficiency of visible light including the incident, reflected and/or refracted visible light captured by the 3D configuration. Moreover, the oxygen vacancies (Ti3+) can work as electron donors, which leads to the enhanced electronic conductivity and upward shift of the Fermi energy level, and thereby facilitating the transfer and separation of the photogenerated charge carrier at the semiconductor-electrolyte interface. This work offers a new opportunity to promote the PEC water splitting activity of TiO2-based photoelectrodes.

19.
Nanotechnology ; 33(28)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35385836

RESUMO

Despite the demonstrated high-efficiency of solar cells and light-emitting devices based on two-dimensional (2D) perovskites, intrinsic stability of the 2D perovskites is yet far from satisfactory. In this work, we find the 2D (BA)2PbI4perovskite crystals rapidly degrade in the ambient conditions and the photoluminescence (PL) nearly completely quenches in 6 d. Moreover, the PL shoulder band due to defects and absorption band of PbI2gradually rise during degradation, suggesting the precipitation of PbI2. Besides, rod structures are observed in the degraded crystals, which are attributed to the formation of one-dimensional (1D) (BA)3PbI5perovskites. And the degradation can be largely retarded by decreasing the humidity during storage. Therefore, a chemical reaction for the degradation of (BA)2PbI4is proposed, revealing the interactions between water molecules and undercoordinated defects are very critical for understanding the degradation. Enlightened by these findings, dimethyl itaconate (DI) treatment is developed to passivate the defects and block the intrusion of moisture to improve the stability of the (BA)2PbI4. After storage in the ambient environment for 16 d, the DI treated (BA)2PbI4only shows a slight surface degradation without formation of any nanorod-like structures, and the PL intensity retains about 70%. Therefore, our systematic study provides a comprehensive understanding on the degradation dynamics of 2D perovskites, which will promote future development of intrinsically stable 2D perovskites.

20.
ACS Appl Mater Interfaces ; 14(10): 12412-12422, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234446

RESUMO

Photoinduced phase segregation (PPS) is considered as a dominant factor that greatly deteriorates the performances of mixed-halide perovskite devices. However, the mechanism of PPS is still under fierce debate. Herein, CsPb(Brx/Cl1-x)3 microplatelets (MPs) with homogeneous and heterogeneous surfaces are obtained by controlling the growth conditions. Under continuous irradiation, a new photoluminescence (PL) band at 516 nm gradually appears in the heterogeneous MPs, accompanied with the decreased emission of the mixed phase at 480 nm, revealing the occurrence of PPS, while the photoirradiation only leads to slight PL dimming without PPS in the homogeneous MPs. The direct correlation between PPS and the structural heterogeneity indicates that the localized electric field-induced drift (LEFD) of halide ions/carriers is responsible for the PPS. In situ microfluorescence images evidence that the migration of halide ions is directed by the structural heterogeneity-induced localized electric field. Our refined model not only consolidates that PPS can be suppressed by eliminating the defects but also reveals that PPS can be directed by the distribution of defects. Therefore, a fluorescence micropatterning technique is developed based on PPS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...